The XeF_2-MF_5 (M = Sb, Ta, or Nb) Systems: Vibrational Spectra of Solid Xenon Difluoride Adducts ¹

By Boris Friect and John H. Holloway,* Department of Chemistry, The University of Leicester, Leicester LE1 7RH

The i.r. and Raman spectra of the compounds $2XeF_2 \cdot MF_5$ (M = Sb or Ta), $XeF_2 \cdot MF_5$, and $XeF_2 \cdot 2MF_5$ (M = Sb, Ta, or Nb) have been measured, and it has been shown that, although the spectra are best interpreted in terms of ionic formulations involving [XeF]⁺ and [Xe₂F₃]⁺, there is increasing covalent character in the series, XeF₂·SbF₅ < XeF₂·TaF₅ < XeF₂·TaF₅ < XeF₂·SbF₅ < XeF₂·SbF₅

Weight-loss versus time-of-pumping studies on the products of reaction of large excesses of XeF₂ with the pentafluorides have shown that, in addition to the simple 2:1,1:1, and 1:2 compounds, species with compositions $[2XeF_2 \cdot Xe_2F_3]^+ [SbF_6]^-$, $[XeF_2 \cdot XeF]^+ [TaF_6]^-$, and $[XeF_2 \cdot XeF]^+ [NbF_6]^-$ are also formed.

ADDUCTS of xenon diffuoride with pentafluorides were amongst the first noble-gas compounds to be discovered.² Most preparative methods have yielded adducts having $XeF_2: MF_5$ mole ratios of 2:1, 1:1, and $1:2.2^{-5}$ Differential thermal analytical (d.t.a.) investigations have produced, in addition, evidence for other, more complex, stoicheiometries.⁶⁻⁸ Interestingly, the first d.t.a. study ⁶ produced no evidence for $2XeF_{3}$ ·SbF₅ and the more recent investigations on the tantalum and niobium systems⁸ failed to detect 2XeF₂·TaF₅ or XeF₂·NbF₅.

Recently d.t.a. investigations have shown that chemical equilibria in the systems are established rather slowly.⁹ We have found that kinetic factors are very important in the formation of xenon difluoridepentafluoride adducts, especially in those where the xenon difluoride content is high. The results of dynamic d.t.a. methods must, therefore, be treated with the utmost caution.

The present work is in two parts. In the first 2:1, 1:1, and 1:2 adducts of xenon diffuoride with the pentafluorides of antimony, tantalum, and niobium have been prepared by the direct combination of stoicheiometric amounts of the components and their vibrational spectra have been investigated in detail. The work includes the first preparation of 2XeF₂·TaF₅ and the first study of the vibrational spectra of this, XeF₂·TaF₅, and XeF₂·NbF₅. Clear evidence of a gradation of ionic character in the series of adducts has been obtained. In the second part detailed examination of Raman data on the products formed in the reaction of excess of xenon difluoride with each pentafluoride and the subsequent stepwise decomposition of the products in vacuo has enabled us to characterize new adducts which may be conveniently formulated as

† On leave from the Jožef Stefan Institute, University of Ljubljana, Yugoslavia.

¹ Some preliminary information has already been published: B. Frlee and J. H. Holloway, J.C.S. Chem. Comm., 1973, 370; 1974, 89.

² A. J. Edwards, J. H. Holloway, and R. D. Peacock, Proc. Chem. Soc., 1963, 275.

³ J. Binenboym, H. Selig, and J. Shamir, J. Inorg. Nuclear Chem., 1968, 30, 2863.

⁴ J. H. Holloway and J. G. Knowles, J. Chem. Soc. (A), 1969, 756.

⁵ F. O. Sladky, P. A. Bulliner, and N. Bartlett, J. Chem. Soc. (A), 1969, 2179.

 $[2XeF_2 \cdot Xe_2F_3]^+ [SbF_6]^-,$ [XeF₂·XeF]⁺[TaF₆]⁻, and $[XeF_2 \cdot XeF]^+ [NbF_6]^-$. All efforts to prepare a niobium fluoride adduct richer in xenon difluoride than XeF_2 ·NbF₅ have failed.

RESULTS AND DISCUSSION

Products of the Stoicheiometric Reactions.—Gravimetric determination, X-ray powder photography, and vibrational spectroscopy confirmed the nature of the adducts produced. $2XeF_2$ ·TaF₅ Has not been reported before and no vibrational spectroscopic data are available for this, $XeF_2 \cdot TaF_5$, or $XeF_2 \cdot NbF_5$.

2XeF₂·SbF₅ and 2XeF₂·TaF₅. There is similarity between the X-ray diffraction patterns of these compounds but they are not isostructural. The solid-state i.r. and Raman spectra (Table) confirm the overall structural relationship.

The main features of our recorded Raman spectrum for $[\mathrm{Xe}_2\mathrm{F}_3]^+[\mathrm{Sb}\mathrm{F}_6]^-$ agree well with those of other authors,^{10,11} except that one peak in the strong doublet associated with the Xe-F stretching mode appears at 595 cm⁻¹ rather than at 591 cm⁻¹. This discrepancy might be explained by the presence of 25-30% of $[2XeF_2 \cdot Xe_2F_3]^+[SbF_6]^-$ [which has peaks in the Raman spectrum at 590.5 (100) and 576 (8.3) cm⁻¹] in their samples. However, they do not report the related shift at $518~{\rm cm^{-1}}$ for $[2{\rm XeF_2}{\cdot}{\rm Xe_2F_3}]^+[{\rm SbF_6}]^-$ which should have a relative intensity of ca. 5 in their spectra. We can find no evidence in the i.r. spectrum for the strong band at 617 cm⁻¹ reported by Russian workers.¹²

The Raman and i.r. spectra of $[Xe_2F_3]^+[TaF_6]^$ correlate well with those of $[Xe_2F_3]^+[SbF_6]^-$. In the Raman, further splitting of the high-frequency component of the Xe-F stretching mode occurs, probably

⁶ O. D. Maslov, V. A. Legasov, V. N. Prusakov, and B. B. Chaivanov, Zhur. fiz. Khim., 1967, 41, 1832 (Russ. J. Phys. Chem., 1967, **41**, 984).

⁷ V. A. Legasov, V. N. Prusakov, and B. B. Chaivanov, *Zhur. fiz. Khim.*, 1970, **44**, 2629 (*Russ. J. Phys. Chem.*, 1970, **44**, 1496). ⁸ V. A. Legasov and B. B. Chaivanov, *Zhur. fiz. Khim.*, 1971, ⁴⁵ 502 (*Duce. J. Phys. Chem.*, 1071, **45**, 325).

V. A. Legasov and B. D. Charvanov, Znav. Jve. Linnin, 1011, 45, 593 (Russ. J. Phys. Chem., 1971, 45, 325).
B. B. Chaivanov, V. A. Legasov, V. N. Prusakov, and V. B. Sokolov, IAE Report 2186, Moscow, 1972.
I. D. J. Cillerrie and B. Lande, Lengra Chem. 1973, 12, 1383.

 ¹⁰ R. J. Gillespie and B. Landa, *Inorg. Chem.*, 1973, 12, 1383.
 ¹¹ G. S. Baranov, N. P. Egorov, A. N. Sopikov, and B. B. Chaivanov, Zhur. fiz. Khim., 1972, 46, 18 (Russ. J. Phys. Chem., 1972, 46, 10).

¹² B. B. Chaivanov, Zhur. priklad. Khim., 1972, **46**, 23 (Russ. J. Phys. Chem., 1972, **46**, 13—a number of printing errors occur in the English translation).

as a result of the presence of crystallographically non-equivalent sites or weak intermolecular coupling. There is little doubt that the peak at 571 cm⁻¹ is attributable to an Xe-F stretch. Although it is possible that deviation from the purely ionic formulation may lead to a breakdown of the mutual exclusion rule so that the v_3 vibration of $[TaF_6]^-$ might appear in the Raman, the peak observed is far too strong. The peak

either a result of slight cation-anion interaction or factor-group splitting. The i.r. spectra of both adducts are dominated by the strong i.r.-active mode, ν_3 , which confirms the Raman assignments.

 $XeF_2 \cdot SbF_5$, $XeF_2 \cdot TaF_5$, and $XeF_2 \cdot NbF_5$. X-Ray powder diffraction patterns show that $XeF_2 \cdot TaF_5$ and $XeF_2 \cdot NbF_5$ are isostructural but $XeF_2 \cdot SbF_5$ differs. The solid-state i.r. and Raman spectra, however,

Infrared and Raman	spectra of solid xenor	n difluoride-pentafluoride	adducts (frequencies in cm	l-1
	with inter	sities in parenthesis)		

2XeF ₂ ·SbF ₅ Raman Freq. 159 (24) 172 (10) 183 (5)	Infrared Freq.	2XeF ₂ ·TaF ₅ Raman Freq. 155 (13) 164 (25) 182 (19) 271 (8)	Infrared Freq.	Assignment $\begin{cases} \delta(\mathbf{F}^{-}\mathbf{X}\mathbf{e}^{+}\cdots\mathbf{F}) \\ \sigma_{\mathbf{x}}(\mathbf{X}\mathbf{K}^{-}\mathbf{e}) \end{cases}$	XeF ₂ ·SbF ₅ Raman Freq.) 140 (22)	Infrared Freq.	XeF ₂ ·TaF ₅ Raman Freq. 122 (9) 179 (4)	Infrared Freq.	XeF ₂ ·NbF ₅ Raman Freq. 123 (9) 151 (12) 193 (6)	Infrared Freq.	Assignment lattice modes δ(F-Xe····F)
282 (12) 294 (3)	438sh 460m	428br(2)	438sh 454m	$\begin{cases} \nu_{5}(MF_{6}) \\ \nu(Xe\cdots F) \\ \end{pmatrix} \nu(M\cdots F)$	273 (10) 290 (13)		288 (10) 318(45) 352 (2) 396 (2)		286 (9)		$v_3(F^SbF_6)$ $v_9(F^SbF_6)$ $v(Xe\cdots F)$ $v_{11}(F^TaF_5)$ $v_3(F^TaF_5)$
583 (100)	490br 570m	571 (70) 585 (78)	577vs	$\nu(\mathrm{TaF_{6}^{-}})$	473 (14)	450sh 476br	461 (10) 468 (18) 472 (11) 580 (10)	468br, m	587 (14)	456sh 470w 490m 582m s	$\left. \right\} \nu_{4}(\mathbf{F}^{-}-\mathbf{M}\mathbf{F}_{5})$
649 (24)	999H	592 (100) 598 (85)	590w 592w 600w	$\begin{cases} \nu(\text{Xe-F}) \\ \nu_1(\text{SbF}_6^-) \end{cases}$	592 (12) 610sh (98) 615 (100)	608m	600 (83) 607 (100)	603s	596 (100) 691 (95)	602s	$\begin{cases} \nu_2(\mathbf{F} - \mathbf{M}\mathbf{F}_5) \\ \nu_5(\mathbf{F} - \mathbf{SbF}_5) \\ \end{pmatrix} \nu(\mathbf{Xe} - \mathbf{F}) \end{cases}$
	660vs 690sh	693 (38)	652br, w	$\Big\}_{\substack{\nu_3(\mathrm{SbF}_6^-)\\\nu_1(\mathrm{TaF}_6^-)}}$	617 (100) 645 (20) 665 (55)	652vs	614 (53) 640 (5)	619s 652br, m?	667 (8)	641s	$ \begin{array}{c} \downarrow \\ \nu_8(F^MF_8) \\ \nu_8(F^SbF_5) \\ \nu_1(F^SbF_5) \end{array} $
		000 (00)	712w		681 (9)	690s	675 (4) 714	713m	667 (8) 711 (58)	710m	
		XeF, R F 1111 229 (271 (296 (484	22SbF. aman Infrar req. Freq rw 15) 10) (5) 455sh 470m 480sh (15) 528m	XeF2*2TaF red Raman 115 (5) 147 (10) 200 (4) 218 (6) 240sh (10 2.33<(21)	Jnfrared Freq.) 491br, w 564sh	XeF _z -2NI Raman Freq. 152 (3) 216 (8) 253 (16) 271 (5) 297 (5) 322 (3) 339 (3) 353? (1) 410(3) 504 (3) 545 (3)	bF, Infrared Freq. 500br, m	$\begin{cases} A \\ lati \\ \} \delta(F \\ \nu(X \\ \nu(X \\ \nu(S \\ \nu$	ssignment ice modes $-Xe \cdots F$) $I_2F_{11}-)$ $Ee \cdots F$) $bb_2F_{11}-)$ $(b \cdots F)$ $(a \cdots F)$ $(b \cdots F)$ $(b \cdots F)$ $(a \cdots F)$		
		611s 619	h (18) 611w (100) 626w	605 (75) 610 (100) 614 (80)	5768 581sh 608br, s	600 (10	0) 600m	$\begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(e-F)		
		652 661 681 691 704	(44) 650vs (7) 690m (19) 724sh (53) (3)	628 (13) 646 (5) 654 (4) 667 (7) 680 (8) 698 (6) 726 (75) 738 (40)	667m 669m, w 724sh 735sh 752sh	$\begin{array}{c} 649 \ (4) \\ 665 \ (12) \\ 682 \ (6) \\ 716 \ (6) \\ 725 \ (18) \\ 740 \ (66) \\ 752 \ (3) \\ 767 \ (8) \end{array}$	638s 662sh 671sh 701m, w 730m, w 752sh 760sh 780sh	$\left\{ \begin{array}{c} \\ \\ \end{array} \right\}^{\nu(\mathbb{I})}$	£2F11-)		

at 428 cm⁻¹ is attributed to the stretching mode of the weak $Xe \cdots F$ bonds in $[Xe_2F_3]^+$ In $2XeF_2 \cdot SbF_5$ an equivalent but very weak band has been reported, as expected, at lower frequency.¹⁰

Our Raman assignments were made on the basis of O_{λ} symmetry for isolated octahedral $[MF_6]^-$ anions. This is reasonable in view of the appearance of the Raman-active modes, v_1 and v_5 , and the absence of the Raman-inactive modes, v_3 and v_4 , in each case. The splitting of v_5 in the case of $[Xe_2F_3]^+[SbF_6]^-$ is

indicate an overall structural similarity and are compared in the Table. Our spectrum for $XeF_2 \cdot SbF_5$ is in close agreement with that of Gillespie and Landa.¹⁰

The spectrum of $XeF_2 \cdot SbF_5$ has been interpreted on the basis of O_h symmetry for the anion.¹⁰ Definitive assignment of the anion modes in our spectra is difficult since, in the cases of the antimony and tantalum adducts, more than six anion modes are observed. An alternative to assuming that the compounds are ionic species $[XeF]^+[MF_6]^-$ (in which the anion has O_h symmetry) is to formulate them as fluorine-bridged structures $Xe-F^+ \cdots F^--MF_5$ in which the anion can be regarded as distorted from O_h to C_{4v} symmetry.¹³ For C_{4v} symmetry eleven normal modes of vibration are expected which are related to the six vibrational modes of the $[MF_6]^-$ anion of O_h symmetry (Figure 1). In particular the frequencies of the normal modes for the C_{4v} molecule, $v_1(a_1)$, $v_2(a_1)$, $v_8(e)$, $v_3(a_1)$, and $v_7(b_2)$, should correspond closely to those of the respective normal modes of the O_h molecule, $v_1(a_g)$, $v_2(e_g)$, $v_3(t_{1u})$, $v_4(t_{1u})$, and $v_5(t_{2g}).$

Recent force-field calculations for the hexafluoroanions, $[MF_6]^-$ (M = Sb, Ta, and Nb),¹⁴ and the correlation diagram (Figure 1) allow the ready assignment

FIGURE 1 Vibrational modes and their correlations for $O_{\mathbf{k}}$ and C_{4r} molecules

of $v_1(a_1)$ and $v_9(e)$ for each adduct. The bands in all the spectra in the 450-490 cm⁻¹ region cannot reasonably be assigned to vibrations of octahedral $[MF_6]^-$ anions and must be assigned to additional $\nu(M \cdots F)$'s if O_h symmetry is invoked. With an assignment based on C_{4v} symmetry these bands are readily assigned to $v_4(a_1)$. The observation of this band in each of the spectra and of bands attributable to $\nu(Xe \cdots F)$ in $XeF_2 \cdot SbF_5^{10}$ and XeF_2 ·TaF₅ is evidence for rather strong cationanion interaction in the adducts. Thus, assignment on the basis of C_{4v} symmetry for the anion is easier than for O_h , which requires a breakdown of the mutual exclusion rule with respect to v_3 in XeF₂·SbF₅ and v_1 in XeF₂·TaF₅ and XeF₂·NbF₅ and factor-group splitting of v_1 in XeF₂·SbF₅.

¹³ G. J. Schrobilgen, Ph.D. Thesis, McMaster University, Canada 1973; B. Landa, Ph.D. Thesis, McMaster University, Canada, 1974; R. J. Gillespie and G. J. Schrobilgen, *Inorg. Chem.*, in the press; R. J. Gillespie, B. Landa, and G. J. Schrobilgen, *Inorg. Chem.*, in the press.
¹⁴ R. Bougon, T. Bui Huy, A. Cadet, P. Charpin, and R. Rousson, *Inorg. Chem.*, 1974, 13, 690.

XeF₂·2SbF₅, XeF₂·2TaF₅, and XeF₂·2NbF₅. X-Ray powder photography shows that the tantalum and niobium adducts are isostructural but that the antimony analogue has a different, but probably related, structure. The Raman for $XeF_2 \cdot 2SbF_5$ and our i.r. data for the adduct and for $Cs^+[Sb_2F_{11}]^-$ further support earlier Raman assignments ¹⁰ (Table).

Our Raman spectra for XeF₂·2TaF₅ and XeF₂·2NbF₅ (see Table) differ significantly from those reported earlier.¹⁰ We were able to resolve the single peak for ν (Xe-F) at 610 cm⁻¹ in XeF₂·2TaF₅¹⁰ into a triplet centred at 610 cm⁻¹ and in XeF₂·2NbF₅ the strongest shift was at 600 cm⁻¹ rather than at 596 cm⁻¹.¹⁰ This is confirmed by the appearance of an absorption at 600 cm^{-1} in the i.r. region. The lower value reported by Gillespie and Landa¹⁰ probably results from contamination with $XeF_2 \cdot NbF_5$ which has strong peaks at 596(100) and 601(95) cm⁻¹. The overall stoicheiometry may, nevertheless, have been preserved since their peak at 715(11) cm^{-1 10} is twice as strong as ours and may indicate the presence of unchanged NbF₅. However, a much stronger shift at 766 cm⁻¹ due to unreacted NbF_5 and a weaker one at 752 cm⁻¹ ¹⁵ should also have been observed.

General Trends.—X-Ray crystallographic studies ¹⁶⁻¹⁸ and Raman spectroscopic examination 5,10 of representatives of the 2XeF2.MF5, XeF2.MF5, and XeF2.2MF5 classes of adduct indicate that they may be formulated $[Xe_2F_3]^+[MF_6]^-$, $[XeF]^+[MF_6]^-$, and $[XeF]^+-[M_2F_{11}]^-$. No Xe···F contact distance between the xenon atoms in $[Xe_2F_3]^+$ and the nearest fluorine of $[AsF_6]^-$ in $[Xe_2F_3]^+[AsF_6]^-$,¹⁶ which presumably has structure (I), has been quoted, but the short fluorinebridge bonds in XeF·Sb₂F₁₁ (2·35 Å) ¹⁷ and XeF·RuF₆ (2.18 Å) ¹⁸ testify against perfect salt-type formulations.

The fact that the spectra of the XeF₂·MF₅ adducts can be readily assigned on the basis of C_{4v} symmetry for the hexafluoro-anion is strong evidence for a significant lowering of the symmetry of the octahedral anion by fluorine bridging to the [XeF]⁺ cation. The splitting of v(Xe-F) in many of the adducts is attributed to factor-group splitting since v(Xe-F) is totally symmetric. However, the mean value of the stretching frequencies associated with $\nu(Xe-F^+)$ for the $XeF_2 \cdot 2MF_5$ and $XeF_2 \cdot MF_5$ series of adducts decrease $SbF_5 >$ ¹⁵ I. R. Beattie, K. M. S. Livingston, G. A. Ozin, and R. J.

Reynolds, J. Chem. Soc. (A), 1969, 958. ¹⁶ F. O. Sladky, P. A. Bulliner, N. Bartlett, B. G. DeBoer, and

A. Zalkin, Chem. Comm., 1968, 1048. ¹⁷ V. M. McRae, R. D. Peacock, and D. R. Russell, Chem.

Comm., 1969, 62. ¹⁸ N. Bartlett, M. Gennis, D. D. Gibler, B. K. Morrell, and A. Zalkin, Inorg. Chem., 1973, 12, 1717.

 $TaF_5 > NbF_5$ (see Figure 2) which indicates that the Xe-F bond length in $[XeF]^+$ is progressively lengthened. At the same time, comparison of the weak peaks assigned to $v(Xe \cdots F)$ shows a progressive increase in the value of the mean frequency and this can be

FIGURE 2 Stretching frequencies associated with ν (Xe-F)

reasonably attributed to the increasing strength of the bridging bond. The observation of the bending modes of the fluorine bridge in the two series is also in accord with these results.

The anionic parts of the molecules also reflect the covalent character of the species but establishment of clear trends to parallel those associated with $\nu(XeF^+)$ is more difficult. Comparison of the frequencies associated with the anionic parts of the XeF2.2MF5 series, however, is interesting. Although no definitive assignments of absorption bands associated with $[M_2F_{11}]^-$ species have been made, Raman spectra for solid SbF₅,¹⁹ TaF₅, and NbF₅ ¹⁵ have been reported and it appears that the shifts associated with the 'anionic' components in the series $XeF_2 \cdot 2SbF_5 \longrightarrow$ $XeF_2 \cdot 2TaF_5 \longrightarrow XeF_2 \cdot 2NbF_5$ become progressively more pentafluoride-like as evidenced by the increasing number of bands in the high-frequency region of their spectra which can be correlated with the spectra of the pentafluorides.^{15,19} MoF₅²⁰ And NbF₅¹⁵ are the only solid pentafluorides with fully assigned spectra. NbF₅ Has bands in the high-frequency regions assigned as follows, $\nu(NbF)_{eq} = 766\nuvs; \nu(NbF)_{eq}$ or $\nu(NbF)_{ax} = 752w; \nu(NbF)_{eq} = 716vs; \nu(NbF)_{ax} = 668w$ and $\nu(NbF)_{ax} = 656.^{15} \text{ XeF}_2 \cdot 2\text{SbF}_5$ Has five bands in this region, $\text{XeF}_2 \cdot 2\text{TaF}_5$ has eight, and $\text{XeF}_2 \cdot 2\text{NbF}_5$ also has eight of which four correlate closely with the NbF_5 spectrum.

In $2XeF_2$ ·TaF₅ the frequencies of $\nu(Xe-F)$ are higher

(see Figure 2) and $v(Xe \cdots F)$ lower than in the analogous antimony adduct. Although, in this case, the $Xe \cdots F$ stretching frequency is not only associated with a fluorine bridge to the $[MF_6]^-$ ion but with bonds in the $[Xe_2F_3]^+$ ion itself, the changes lead to the conclusion that the cation has more electron density withdrawn in the tantalum case. This presumably occurs because of its closer involvement with the anion through some secondary bridging to the xenon atoms in $[XeF_3]^+$ by the fluorines of the $[TaF_6]^-$ ion.

Reactions of an Excess of Xenon Difluoride with the Pentafluorides SbF_5 , TaF_5 , and NbF_5 and the Products of Decomposition.—Monitoring of the reaction mixtures has shown that the same series of adducts can be obtained by the stepwise decomposition of the highest xenon difluoride-containing species. The products are less pure than those produced by stoicheiometric combination. Species with compositions $[2XeF_2 \cdot Xe_2F_3]^+$. $[SbF_6]^-$, $[XeF_2 \cdot XeF]^+[TaF_6]^-$, and $[XeF_2 \cdot XeF]^+[NbF_6]^-$ are also formed and equilibria between these, the simpler adducts and the component molecules occur.

The XeF₂·SbF₅ System.—In a typical reaction 11.75 mmol of XeF₂ with 2.00 mmol of SbF₅ was taken to completion by holding the mixture at 115 °C for 100 min when it melted to a clear, deep yellow, solution. The composition of the eutectic melt at this point was close to $5XeF_2$ ·SbF₅ (cf. ref. 7). The mixture was quenched and pumped at room temperature for 250 min when the weight-loss versus time-of-pumping curve levelled off at the composition $2XeF_9$ ·SbF₅.

FIGURE 3 Raman spectra of the solids during the vacuum decomposition of the mixture XeF_2 -SbF₅ at room temperature

The Raman spectrum of the quenched melt before pumping is entirely different from the spectra of $2XeF_2 \cdot SbF_5$ and $XeF_2 \cdot SbF_5$. The spectrum, however, is related to that of $2XeF_2 \cdot SbF_5$ (see Figure 3). The ¹⁹ P. A. W. Dean and R. J. Gillespie, *Canad. J. Chem.*, 1971, **49**, 1736. ²⁰ J. B. Bates, *Spectrochim. Acta*, 1971, **27A**, 1255. peak associated with v_1 of $[SbF_6]^-$ is shifted to slightly lower frequency and those associated with $\delta(F^-Xe^{-}F^+)$ are also displaced. The most significant differences are that the doublet characteristic for $[Xe_2F_3]^+$ is changed in relative intensity and shifted towards lower frequencies and, in addition, there are new bands above $v(Xe^-F)$ in free XeF_2 .²¹ This can be interpreted in terms of a loosening of the xenon-fluorine bonds in the $[Xe_2F_3]^+$ ion due to partial withdrawal of electrons by the weak association of XeF_2 molecules. Since the Raman spectrum at the composition $3\cdot 1XeF_2\cdot SbF_5$ (see Figure 3) indicates that the new complex is already giving way to $[Xe_2F_3]^+[SbF_6]^-$ it seems reasonable to suppose that two XeF_2 molecules are involved in a weak association with the $[Xe_2F_3]^+$ unit (II).

In addition to the peaks already discussed the original spectrum indicates the presence of free xenon di-fluoride.²¹

The weakly associated XeF_2 can be easily removed at room temperature, without the appearance of inflexions in the pumping curve, until the composition $2XeF_2$ ·SbF₅ is reached. The Raman spectrum then coincides with that of the sample produced by reaction of the stoicheiometric quantities of XeF_2 and SbF_5 (see Figure 3). Hence the first part of the weight-loss versus time-of-pumping curve can be explained by the following equation:

$$n\operatorname{XeF}_{2} + \operatorname{SbF}_{5}(n > 4) \longrightarrow$$

$$[2\operatorname{XeF}_{2} \cdot \operatorname{Xe}_{2}\operatorname{F}_{3}]^{+}[\operatorname{SbF}_{6}]^{-} + (n - 4)\operatorname{XeF}_{2} \longrightarrow$$

$$[\operatorname{Xe}_{2}\operatorname{F}_{3}]^{+}[\operatorname{SbF}_{6}]^{-} + (n - 2)\operatorname{XeF}_{2}$$

 $[Xe_2F_3]^+[SbF_6]^-$ Is stable at room temperature even in a dynamic vacuum. At 100 °C it loses xenon difluoride to give $[XeF]^+[SbF_6]^-$ after 18 h of pumping. This cannot be decomposed further in a dynamic vacuum but volatilizes unchanged at 150 °C.

Because of the practical difficulties in examining the higher temperature decomposition of $[\rm Xe_2F_3]^+[\rm SbF_6]^-$ we have not monitored the decomposition for other loosely bound species. However, examination of the spectra of the melt 22 shows that $[\rm XeF_2\cdot XeF]^+[\rm SbF_6]^-$ might be formed.

The XeF₂-TaF₅ System.—Mixtures of xenon difluoride and tantalum pentafluoride in mole ratios NeF₂: TaF₅ = 2·14:1 form clear yellow melts at ca. 70 °C. The spectrum of the quenched melt is a combination of the spectra of $[Xe_2F_3]^+[TaF_6]^-$ and $[XeF]^+[TaF_6]^-$ with additional peaks at 507 and ²¹ P. Tsao, C. C. Cobb, and H. H. Claassen, J. Chem. Phys., 1971, 54, 5247. 516 cm⁻¹ due to weakly associated XeF₂. In view of the overall stoicheiometry it seems most probable that the XeF₂ is involved with [XeF]⁺ rather than [Xe₂F₃]⁺. The Raman spectra of quenched melts having the composition XeF₂: TaF₅, 2:1, which have been prepared *in vacuo* also contain the same three adducts. If, however, the melt is prepared and quenched under one or more atmospheres pressure of xenon or nitrogen, which prevents significant escape of free xenon difluoride from the hot zone, the formation of [XeF₂·XeF]⁺[TaF₆]⁻ and [XeF]⁺[TaF₆]⁻ is minimized and [Xe₂F₃]⁺[TaF₆]⁻ is essentially the only product. It can, therefore, be reasonably postulated that an equilibrium, [Xe₂F₃]⁺-[TaF₆]⁻ \Longrightarrow [XeF₂·XeF]⁺[TaF₆]⁻ \rightleftharpoons [XeF]⁺[TaF₆]⁻ +XeF₂ occurs in melts ²² containing XeF₂: TaF₅ in mole ratios greater than 2:1.

 $[{\rm Xe_2F_3}]^+[{\rm TaF_6}]^-$ Has an appreciable decomposition pressure at room temperature in a dynamic vacuum as the above equilibrium suggests. It decomposes readily in a dynamic vacuum at room temperature to yield $[{\rm XeF}]^+[{\rm TaF_6}]^-_1$ and xenon diffuoride. Raman spectra run during the decomposition of $[{\rm Xe_2F_3}]^+[{\rm TaF_6}]^-$ to $[{\rm XeF}]^+[{\rm TaF_6}]^-$ show that the intermediate adduct is present only in mixtures with the two limiting compounds.

The XeF₂-NbF₅ System.-Mixtures of xenon difluoride and niobium pentafluoride in mole ratios $XeF_2: NbF_5 = >2.00: 1$ melt at *ca*. 50 °C but an excess of xenon difluoride can only be brought into solution at about 110 °C. An eutectic is formed at composition 3.8XeF₂·NbF₅. Raman spectra of these quenched melts provide no evidence of $[Xe_2F_3]^+$. Only peaks associated with free and loosely bound XeF, together with the expected spectrum for [XeF]⁺[NbF₆]⁻ are observed and this in interpreted in terms of the presence of the adduct $[XeF_2 \cdot XeF]^+ [NbF_6]^-$ (see Figure 4). The adduct appears to be stable only in the presence of an excess of xenon difluoride. It decomposes readily in a dynamic vacuum at room temperature and no points of inflexion are observed in the weightloss versus time-of-pumping curve until the 1:1 adduct composition is reached.

General Discussion.—These results indicate the formation of $[2XeF_2 \cdot Xe_2F_3]^+[SbF_6]^-$, $[XeF_2 \cdot XeF]^+[TaF_6]^-$, and $[XeF_2 \cdot XeF]^+[NbF_6]^-$ in the systems studied.

We have written the formulae of the new adducts as $[2XeF_2 \cdot Xe_2F_3]^+[SbF_6]^-$, $[XeF_2 \cdot XeF]^+[TaF_6]^-$, and $[XeF_2 \cdot XeF]^+[NbF_6]^-$ since this conveniently differentiates the loosely bound xenon diffuoride from that more closely associated with the pentafluoride, but this is merely a formalism.

The identification of these new adducts in the xenon difluoride-pentafluoride systems means that attempts to prepare the simple 2:1, 1:1, and 1:2 adducts by the combination of the exact mole ratios of the constituents, if carried out under conditions which allow one of them to be partially removed from the heating or

 $^{^{22}}$ B. Frlec and J. H. Holloway, J. Inorg. Nuclear Chem., in the press.

quenching zone, will result in equilibria being shifted and adduct mixtures being formed. D.t.a. studies, in which the substances are held at high temperatures for several hours will, in some cases, give rise to mixtures which will include the species we have identified. Indeed, Raman spectroscopic examination of the molten adducts²² have shown that equilibria involving the simple adducts and species containing loosely bound

FIGURE 4 Raman spectra of the solids in the XeF_2-NbF_5 system

XeF₂ do occur. The existence of these equilibria can also plausibly be used to explain the unusually large divergence of reported values of the melting points for the 2:1, 1:1, and 1:2 adducts.^{4,7,22}

EXPERIMENTAL

Starting Materials.—XeF₂ Was prepared by pressure synthesis in a nickel vessel at 300 °C with the starting ratio Xe: F₂ equal to 2:1. It was purified by repeated trap-totrap sublimation in a dynamic vacuum and checked for purity by i.r. spectroscopic examination of the vapour and Raman spectroscopy on the solid.

 SbF_5 , NbF_5 , and TaF_5 Were all prepared from the elements by pressure synthesis in a nickel vessel and purified subsequently by a repeated trap-to-trap sublimation in dynamic vacuum.

X-Ray Diffraction Measurements.—X-Ray diffraction studies were carried out by the powder technique. Specimens were mounted in evacuated Pyrex capillaries and photographed on a Philips 11.64 cm diameter camera with $Cu-K_{\alpha}$ filtered radiation.

Raman Spectra.-Raman spectra were recorded using

Coderg modified PH1 or T800 spectrometers. Exciting radiation was the blue 4880 Å line of a Coherent Radiation Laboratories model 52 ion laser used at *ca*. 250 mW. The Raman shifts were estimated to be accurate to at least 1 cm⁻¹. Samples were examined directly in a square cross-sectioned (7 \times 7 mm) extension of the Pyrex reaction U traps, or were sealed in Pyrex capillaries.

I.r. Spectra.—I.r. spectra of pulverized solids sandwiched between two KBr or AgCl plates were recorded using a Perkin-Elmer 225 Grating Infrared Spectrometer.

Preparation of the Samples.-Pyrex glass U tubes with extended bottoms and equipped with TF2/13 Rotaflo Teflon valves were used for the preparations. SbF₅ Was transferred into the reaction vessels by sublimation in dynamic vacuum, whilst NbF_5 and TaF_5 were loaded into the reaction vessels in a dry box (Lintott Engineering Limited, Horsham, Essex). XeF₂ Was added from a Kel-F container by sublimation in dynamic vacuum. All-metal vacuum lines combined with glass and Kel-F attachments were used in preparations and surfaces were pretreated with F_2 or ClF_3 and evacuated prior to use. Weight balance was followed very carefully throughout the experiments. Raman spectra of the reaction products were recorded and intermediates obtained during the decomposition experiments were also monitored by Raman spectroscopy.

 $2XeF_2 \cdot MF_5$, $XeF_2 \cdot MF_5$, and $XeF_2 \cdot 2MF_5$ Stoicheiometric Preparations.—The required amount of XeF_2 was added to MF_5 (ca. 10 mmol) contained in a reaction vessel and topped with 300 mm of Xe or dry N₂ to prevent XeF_2 escaping during the melting. The reactants were warmed up until a clear melt was obtained. This was then quenched and pumped at room temperature until constant weight was attained.

Reactions of an Excess of XeF_2 with the Pentafluoride and Thermal Decompositions of Products.-Xenon difluoride and the pentafluoride were mixed in the ratio $XeF_2: MF_5$ of >2:1. Although in each case the mixtures reacted together slowly at room temperature,⁴ the reactions do not go readily to completion without heating and so, in each case, the mixture was heated under 1 atm pressure of xenon or nitrogen until a clear melt was obtained. After quenching the mixture was pumped in a dynamic vacuum and the weight loss was observed and the mass balance checked. The Raman spectrum of the solid reaction mixture was run directly in the reactor at suitable times during the decomposition and Raman spectroscopy and X-ray crystallography were used to examine the products at points of inflexion on the weight-loss versus time-ofpumping curves.

We are indebted to Mr. John Fawcett for his very able technical assistance, the S.R.C. for financial support, the Royal Society for an equipment grant, and the Boris Kidrič Foundation for a Fellowship to B. F.

[3/2501 Received, 7th December, 1973]